A new directional model for the electronic frictional forces in molecular dynamics simulations of radiation damage in metals
نویسندگان
چکیده
The damage caused by collision cascades in irradiated materials forms the initial conditions for longer term microstructural evolution. The exchange of energy between electrons and ions during cascades can significantly affect this damage. Models for incorporating this exchange within classical molecular dynamics (MD) simulations exist, but most approximate the ion-electron energy transfer via a damping force, opposed to ionic motion. Although such forces predict the total energy transfer over the duration of cascades, they do not capture the complex dependence of the non-conservative electronic friction force on the speed, direction and atomic environment of individual ions. Here we present a new model for the electronic friction force, derived from quantum-classical Ehrenfest dynamics, which captures this complexity and is suitable for inclusion in existing MD codes at near-zero computational cost. We show that our model reproduces the atomic level detail of the nonconservative electronic force in time-dependent tight-binding simulations of cascades.
منابع مشابه
Quantum Mechanical Simulations of Electronic Stopping in Metals
The close spacing of electron energy levels at the Fermi surface of a metal allows for a ready exchange of energy between ionic and electronic subsystems. In molecular dynamics (MD) simulations of fast moving ions, the heat transfer to electrons is sometimes modelled as a frictional force that slows the ions. Quantum mechanical simulations lay bare these processes and reveal how best to charact...
متن کاملNonadiabatic forces in ion-solid interactions: the initial stages of radiation damage.
The Born-Oppenheimer approximation is the keystone for molecular dynamics simulations of radiation damage processes; however, actual materials response involves nonadiabatic energy exchange between nuclei and electrons. In this work, time dependent density functional theory is used to calculate the electronic excitations produced by energetic protons in Al. We study the influence of these elect...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملAiding the Design of Radiation Resistant Materials with Multiphysics Simulations of Damage Processes
The design of metals and alloys resistant to radiation damage involves the physics of electronic excitations and the creation of defects and microstructure. During irradiation damage of metals by high energy particles, energy is exchanged between ions and electrons. Such "nonadiabatic" processes violate the Born-Oppenheimer approximation, on which all conservative classical interatomic potentia...
متن کاملThree new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations
Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...
متن کامل